Types of Polynomial Equation


Types of Polynomial Equation

A polynomial equation is basically of four types;

  1. Monomial Equations
  2. Binomial Equations
  3. Trinomial or Cubic Equations
  4. Linear Polynomial Equations
  5. Quadratic Polynomial Equations
  6. Cubic Polynomial Equation

Monomial Equation:

An equation which has only one variable term is called a Monomial equation. This is also called a linear equation. It can be expressed in the algebraic form of;

ax + b = 0

For Example:

  • 4x + 1 = 0
  • 5y = 2
  • 8z – 3 = 0

Binomial Equations:

An equation which has only two variable terms and is followed by one variable term is called a Binomial equation. This is also in the form of the quadratic equation. It can be expressed in the algebraic form of;

ax+ bx + c = 0

For Example:

  • 2x+ 5x + 20 = 0
  • 3x– 4x + 12 = 0

Trinomial Equations:

An equation which has only three variable terms and is followed by two variable and one variable term is called a Trinomial equation. This is also called a cubic equation. In other words, a polynomial equation which has a degree of three is called a cubic polynomial equation or trinomial polynomial equation.

Since the power of the variable is the maximum up to 3, therefore, we get three values for a variable, say x.

It is expressed as;

a0 x3 + a1x2 + a2x + a= 0, a ≠ 0

or

ax+ bx2 + cx + d = 0

For Example:

  • 3x+ 12x2 – 8x – 10 = 0
  • 9x+ 5x2 – 4x – 2 = 0

To get the value of x, we generally use, trial and error method, in which we start putting the value of x randomly, to get the given expression as 0. If for both sides of the polynomial equation, we get 0 ,then the value of x is considered as one of its roots. After that we can find the other two values of x.

Let us take an example:

Problem: y– y+ y – 1 = 0 is a cubic polynomial equation. Find the roots of it.

Solution: y– y+ y – 1 = 0 is the given equation.

By trial and error method, start putting the value of x.

If y = -1, then,

(-1)– (-1)2 -1 + 1 = 0

-1 – 1 – 1 – 1 = 0

-4 ≠ 0

If y = 1, then,

1– 1+ 1 – 1 = 0

0 = 0

Therefore, one of the roots is 1.

y = 1

(y – 1) is one of the factors.

Now dividing the given equation with (y – 1), we get,

(y – 1) (y+  1) = 0

Therefore, the roots are y = 1 which is a real number and y+ 1 gives complex numbers or imaginary numbers.

Quadratic Polynomial Equation

A polynomial equation which has a degree as two is called a quadratic equation. The expression for the quadratic equation is:

ax+ bx + c = 0 ; a ≠ 0

Here, a,b, and c are real numbers. The roots of quadratic equations will be two values for the variable x. These can be found by using the quadratic formula

Post a Comment

Previous Post Next Post